Tutorial 8

In the following problems $\mathbb{F}=\mathbb{C}$ and V denotes a finite-dimensional vector space.

1. Let $T \in \mathcal{L}(V)$ be a linear operator and $U \subseteq V$ be a T-invariant subspace. Denote the minimal polynomials of T and $\left.T\right|_{U}$ as p and p_{U}, respectively. Show that p_{U} divides p.
2. Suppose V is an inner product space and $P_{U} \in \mathcal{L}(V)$ is the orthogonal projection operator onto some subspace U. Assume $U \neq\{0\}$ and $U \neq V$.
(a) What is the minimal polynomial of P_{U} ?
(b) What is the characteristic polynomial of P_{U} ?
3. Let $S, T \in \mathcal{L}(V)$ be linear operators and q_{S} be the characteristic polynomial of S. Show that $q_{S}(T)$ is invertible if and only if S and T have no common eigenvalues.
4. Given a fixed $T \in \mathcal{L}(V)$ define

$$
W=\operatorname{span}\left\{T^{k} \in \mathcal{L}(V): k \geq 0\right\}
$$

Show that $\operatorname{dim} W=\operatorname{deg} p$, where p is the minimal polynomial of T.
5. Let $p(z)=\sum_{j=0}^{k} a_{j} z^{j}$ be the minimal polynomial of $T \in \mathcal{L}(V)$. Suppose T is invertible.
(a) What can you say about $p(z)$?
(b) What is the minimal polynomial of T^{-1} ?
(c) If V is an inner product space, what is the minimal polynomial of T^{*} ?
6. Let $A=\left(\begin{array}{cc}0 & 1 \\ -4 & 4\end{array}\right)$. What is A^{n} for $n \in \mathbb{N}$? Hint: the only eigenvalue of A is $\lambda=2$.
7. Let $T \in \mathcal{L}(V)$ be a linear operator and suppose $V=W_{1} \oplus W_{2}$ for some T-invariant subspaces W_{1} and W_{2}.
(a) Suppose q_{1} and q_{2} are the characteristic polynomials of $\left.T\right|_{W_{1}}$ and $\left.T\right|_{W_{2}}$, respectively. Is it true that $q_{1} q_{2}$ is the characteristic polynomial of T ?
(b) Suppose p_{1} and p_{2} are the minimal polynomials of $\left.T\right|_{W_{1}}$ and $\left.T\right|_{W_{2}}$, respectively. Is it true that $p_{1} p_{2}$ is the minimal polynomial of T ?

